Wind Lidar OSSEs in the Joint Center for Satellite Data Assimilation

Lars Peter Riishojgaard1,2, Zaizhong Ma1,2, Michiko Masutani3, Jack Woollen3, Dave Emmitt4, Sid Wood4, Steve Greco4

1Joint Center for Satellite Data Assimilation
2University of Maryland Baltimore County
3NCEP Environmental Modeling Center
4Simpson Weather Associates
Wind Lidar OSSEs

- Impact experiments for GWOS mission concept
 - NASA Tier-3 Decadal Survey mission concept
 - Four telescopes, full vector winds on either side of spacecraft
 - Two technologies, direct and coherent detection
- Experiments funded under Wind Lidar Science element of NASA’s ROSES 2007
- GWOS observations simulated by Simpson Weather Associates using DLSM
GWOS ISAL Instrument Quad Chart

Features of the Instrument Concept
- Utilizes Doppler lidar detection method
 - Coherent (aerosol) detection @ 2 µm
 - Direct (molecular) detection @ 355 nm
- Direct channel laser based on GLAS;
- Direct channel receiver based on TWiLiTE IIP
- Coherent channel laser and receiver based on DAWN IIP
- Telescopes are shared among all lasers
- Pointing and knowledge requirements met with co-located star tracker and GPS

Payload Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>1.5m x 2m x 1.8m</td>
</tr>
<tr>
<td>Mass</td>
<td>567 Kg</td>
</tr>
<tr>
<td>Power</td>
<td>1,500 W</td>
</tr>
<tr>
<td>Data Rate</td>
<td>4 Mbps</td>
</tr>
</tbody>
</table>

Technology Development Needs
- Direct detection system requires 6 billion shots for mission lifetime (2 years)
 - Direct channel baseline is 3 lasers + 1 backup
 - Demonstration of reliable performance at higher or lower lifetimes will determine number of lasers for direct detection channel, impacting mission cost
- Coherent detection system requires demonstration of the 316M shot lifetime in a fully conductively cooled laser
- Both Lidar technologies require aircraft validation flights
Experimental setup

- NCEP GFS at horizontal resolutions T-126 and T-382
- “OSSE period”: July 01-Aug 15, 2005 (simulated)
 - Five-day forecast launched every day at 00Z
 - Most observing systems used for routine operational NWP included, except GPSRO and IASI (will be corrected once we simulate 2010/11 GOS)

- Four experiments, all verified against Nature Run
 - CRTL: Observations as assimilated operationally by NCEP
 - NOUV: as CTRL, but without RAOBS (220, 221 and 232)
 - NONW: as CTRL, but without any wind observations
 - DWL: as CTRL, plus simulated GWOS lidar wind data
500hPa HGT anomaly correlation coefficients (T126)

NH

SH

AC differences outside of outline bars are significant at the 95% confidence level.
500hPa HGT anomaly correlation coefficients (T382)

Impact of DWL observations is larger at the higher resolution (T382), even though skill of control is higher.
Special Case Study (T-382)

Date: Aug 5th, 2005
SH: (20° ~ 80° S)

Candidates for additional study

Lidar Working Group, Miami, May 1-2 2012
RMSE: 200, 850hPa Wind error in tropics (T382)
Important configuration issue for GWOS (impact vs. cost)
Experiments performed with variable number of perspectives:
- One; single line of sight, similar to ADM/Aeolus
- Two; full horizontal wind vectors, left or right side of satellite track
- Four; full GWOS coverage; wind vectors on both sides of satellite track
GWOS Lidar Wind obs

Distribution of Lidar observations for one analysis cycle (July 7 2005, 00Z)

Number of Lidar obs per analysis cycle, before and after QC (shown only for 00Z)
Analysis Impact: Wind

RMSE: WIND P200 Global, Analysis against NR

a) CTRL 3.840 45
 DWL1 3.378 45
 DWL2 3.439 45
 DWL 3.266 45

Verification Date

8JUL 11JUL 16JUL 21JUL 28JUL 1AUG 6AUG 11AUG

2005

RMSE: WIND P850 Global, Analysis against NR

c) CTRL 2.405 45
 DWL1 2.376 45
 DWL2 2.345 45
 DWL 2.318 45

Verification Date

8JUL 11JUL 16JUL 21JUL 28JUL 1AUG 6AUG 11AUG

2005

RMSE: WIND P200 Tropic, Analysis against NR

b) CTRL 5.142 45
 DWL1 4.420 45
 DWL2 4.130 45
 DWL 3.778 45

Verification Date

8JUL 11JUL 16JUL 21JUL 28JUL 1AUG 6AUG 11AUG

2005

RMSE: WIND P850 Tropic, Analysis against NR

d) CTRL 2.432 45
 DWL1 2.339 45
 DWL2 2.249 45
 DWL 2.137 45

Verification Date

8JUL 11JUL 16JUL 21JUL 28JUL 1AUG 6AUG 11AUG

2005
Analysis Impact: Tropical winds
Forecast: Tropical Wind
(RMS error at 200, 850hPa)

Lidar Working Group, Miami, May 1-2 2012
Forecast skill: 500 hPa height AC
Summary and conclusions

- A comprehensive OSSE system has been developed under the Joint OSSE collaboration
- Initial results simulating expected impact of GWOS observations on NCEP GFS system are encouraging
 - Small positive impact in NH extratropics (summer)
 - Larger positive impact in SH extratropics (winter)
 - Very large positive impact in tropics; implications for hurricane forecasting
 - Two perspectives, more coverage lead to larger impact
WLS OSSE outlook (wish list)

- Experiment in opposite season (NH winter/SH summer)
- Increased horizontal resolution (T-574 and higher; requires new Nature Run)
- Detailed case studies
- Separate assessments of the impacts of Direct Detection and Coherent Detection
- Other orbits, e.g. different altitude, lower inclination
- Impact on applications other than NWP, e.g. chemical transport models

Acknowledgments: Study funded primarily through Wind Lidar Science Element of NASA ROSES 2007 (Kakar). Additional resources including computing made available by NCEP/EMC.
Project status

- Original ROSES-funded project scheduled to end by May 2011
 - Due to hiring difficulties, the project got off to a slow start, and no-cost extension through May 2012 was therefore approved by NASA
 - Funding is now exhausted and work has been completed
Project status (II)

- Zaizhong Ma has transitioned to other work within NESDIS/STAR
- OSSE work now proceeding for DWSS under DoD funding, in collaboration with AOML (Bob Atlas)
 - JCSDA team consists of LPR, Michiko Masutani, Sean Casey
- Hope for new NASA-funded Wind Lidar OSSE project
General status of Joint OSSE system/collaboration (more in presentation by Michiko)

- ECMWF-provided T511 Nature Run nearing the end of its shelf life
- Several candidates for replacement
 - ECMWF
 - GMAO
 - ESRL
 - ...
- Community decision is needed
- OSSEs are gaining visibility within NOAA
 - Funding to follow?