Mars Orbiting Lidar

Grady Koch, Richard Davis, Michael Kavaya, and Upendra Singh
NASA Langley Research Center

G. David Emmitt and Sid Wood
Simpson Weather Associates
Motivation

• Provide an instrument to profile Martian atmosphere: wind (by Doppler shift), atmospheric density (by DIAL of CO₂), and aerosol density. (by backscatter intensity).

• Measurement of three parameters can be made with single orbiting 2-μm lidar.

• Unknowns of Martian atmosphere have significant impacts on future exploration:

 “orbital remote-sensing weather station is recommended to obtain vertical profiles of V, T, and \(\rho \) around the globe with high temporal and spatial resolution, particularly emphasizing heights between 0-20 km and 30-60 km.”*

* From NASA draft report “An Analysis of the Precursor Measurements of Mars Needed to Reduce the Risk of the First Human Mission to Mars.”
Specific Customer Needs

• Dr. Robert Tolson, National Institute of Aerospace, wishes for aerocapture designs:
 – Global scale wind from surface to 20 km altitude
 – Global scale atmospheric density from 30-60 km altitude
 – Global scale dust density from surface to 50 km altitude

• Dr. John Wilson, NOAA Geophysical Fluid Dynamics Lab, wishes for global climate studies:
 – Primarily, global scale wind measurements.
LaRC, primarily under LRRP, has developed technology to enable lidar measurements from Mars orbit: high-energy lasers, conductive cooling, single-frequency spectrum, precise wavelength control, and optimized heterodyne detectors.

Proof-of-concept demonstration has been made of coherent DIAL lidar system for simultaneous wind and CO$_2$ measurement:

3-D wind profile over 6 hours

DIAL compared to in-situ sensor
Approach

- Phase 1: 1-year duration (FY 2005)
 - Create model of lidar performance in Mars atmosphere.
 - System designs and trade studies.
 - Technology assessment.

- Phase 2: 2-year duration
 - Build breadboard prototype lidar.
 - Calibrate CO$_2$ precision with spectroscopy.
 - Test and validate with atmospheric measurements correlated with other sensors.
Mars Lidar Simulation Model

- Adapting an existing computer model of Doppler lidar performance from Earth orbit to Mars orbit.
- Contracted with Simpson Weather Associates, Inc. for model development (work began February 2005).
- Model is being developed in modular steps:
 - Convert Earth atmospheric parameters to Mars parameters.
 - Create analysis of Martian wind measurement performance.
 - Add capability for double laser pulse operation.
 - Develop DIAL simulation.
- Near-term work by SWA is to understand dust characteristics; working with NASA Ames group.
A Rough Calculation

• Extrapulating current understanding of Earth wind measurement capability, and

• Extrapulating on detection of dust devils on Mars by Mars Orbiting Laser Altimeter (MOLA)

• Wind measurements are easier on Mars than Earth. A relatively modest lidar would do the job on Mars:
 – Pulse energy = 100 mJ
 – Telescope aperture = ½ m diameter
 – Averaging = 20 pulses
System Design--CO$_2$ Line Selection

Line centered at 2053.204 nm selected for:

- good laser operation
- insensitivity to temp.
- line strength
- no interference from other gases.

Line is “tall and skinny” compared to Earth because of much lower pressure on Mars.

Mars: absorption cross section (x 10^{-22}) cm2/molecule

Earth: absorption cross section (x 10^{-22}) cm2/molecule

Note scale difference
Line strength gives measurements at high altitudes, where density measurements are desired.

Altitude of optimum operation can be tailored:

- choose neighboring line of different strength (stronger and weaker are available)
- tune laser off line center
- exploit Doppler shift
Wavelength Control

- Critical because of narrow width of martian lines.
- Wavelength locking techniques already developed:

Since this development in 2000 other researchers (Coherent Technologies, Inc.) have improved technique to +/- 300 kHz, well within requirements for Mars measurements.
Rapid wavelength switching in double-pulse operation for DIAL has not been sufficiently demonstrated.

Must injection seed at two different wavelengths for each pulse of a doublet.

Switching must occur in less than 100 μs.

Have identified commercial technology (Civcom, Inc.) with electro-optic switch that can switch in 400 ns. A procurement has been initiated for a custom designed switch for 2 μm.
Conclusions

- Characterization of atmosphere of Mars shown to be critical for exploration. Wind, density, and dust are needed measurements.
- 2-μm coherent DIAL is promising for wind, CO$_2$ concentration, and dust profiling with a single instrument.
- Performance model under development.
- Accessible absorption lines are well suited to CO$_2$ measurements in the upper atmosphere, where measurements are desired.
- Most of lidar technology needed has been demonstrated in lab and system testbed. Remaining technology of rapid wavelength switching is being addressed.