Airborne DWL investigations of wing tip vortices and their dissipation

G. D. Emmitt, K. Godwin and C. O’Handley

Simpson Weather Associates
WG Meeting, Boulder, Co.
May 2014
DoD funded study

1st in a series of tests conducted at Yuma Proving Grounds, Arizona in April 2014

Partners:

- US Army ATEC at Yuma (host and co-ordination)
- US Air Force from McCord AFB (C-17)
- ONR CIRPAS (Twin Otter with TODWL)
- Draper Labs (Vortex Model)
- Simpson Weather Associates (TODWL operations, data processing and model validation)
Motivation

• C-17 Wing Tip Vortices generate tangential speeds of 100+ m/s.
• WTVs represent significant danger to paratroopers.
• Current spacing of trailing C-17’s is thought to be much greater than necessary. DoD not comfortable trusting models.
• Ground based DWLs have been used to investigate WTVs (LMCT, NASA, DLR, DoD…….)
• Airborne DWL offers significant flexibility in monitoring WTVs in a variety of aircraft configurations, atmospheric conditions and topographical regions.
Wing Tip Vortices
C-17 General Characteristics

Length: 174 feet (53.04 m)
Height at Tail: 55.1 feet (16.79 m)
Wing Span to Wingtips: 169.8 feet (51.74 m)
Maximum Payload: 164,900 lbs. (74,797 kg)
Range with Payload: 2,420 nautical miles
Cruise Speed: 0.74 – 0.77 Mach
Approach Speed: 130kts
Major considerations

• Differential speed between C-17 and Twin Otter. +10 kts of 130 kts.
• Scanner slew rate
• Six sampling modes
• What are the maximum tangential velocities expected?
• What are the time/space requirements for life cycle monitoring?
• Measurements of thermal stability and wind profiles between surface and 1000m
Vortex Model

- The flow field behind a lift-generating aircraft can be approximated by a pair of fully rolled up vortices a few wing spans behind the aircraft,
Vortex Model

• As the trailing wake rolls up, the vortices move inward from the wingtips and are eventually separated by an effective span, b_{eff}. For an elliptic loading,

$$b_{\text{eff}} = \frac{\pi b}{4}.$$

• The initial vortex strength is given by,

$$\Gamma_0 = \frac{kW}{\rho V_\infty b_{\text{eff}}} = \frac{4kW}{\pi \rho V_\infty b}.$$

• The vortex strength decays over time according to the empirically-derived vortex decay time t_d. t_v is the current vortex age

$$\Gamma = \Gamma_0, \quad t_v \leq t_d$$

$$\Gamma = \Gamma_0 \frac{t_d}{t_v}, \quad t_v > t_d$$
Vortex Model

- The induced velocity is maximum at some distance from the vortex core.

- Induced velocity from Biot-Savart law with corrections to model zero velocity at vortex core
 - Velocity profile based on Kurylowich model

- Numerical model generates new vortex at each time step at each wing tip

\[r_c = 36.2 \sqrt{\frac{vt_v}{\cos^2 \Lambda}} \]

\[V_\theta = \frac{r}{2\pi r} \left[1 - e^{-1.26(r/r_c)^2} \right] \]
Vortex Calculations – 1250 ft. AGL

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Distance from a/c (ft)</th>
<th>Altitude (ft)</th>
<th>Vortex Core Radius (ft)</th>
<th>Max Vtan (ft/s)</th>
<th>Radius (ft) with Vtan of 20 ft/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>1640 (0.5 km)</td>
<td>1216</td>
<td>1.39</td>
<td>391</td>
<td>37.99</td>
</tr>
<tr>
<td>15</td>
<td>3281 (1km)</td>
<td>1174</td>
<td>1.97</td>
<td>277</td>
<td>37.99</td>
</tr>
<tr>
<td>30</td>
<td>6561 (2km)</td>
<td>1088</td>
<td>2.78</td>
<td>195</td>
<td>37.99</td>
</tr>
<tr>
<td>60</td>
<td>13123 (4km)</td>
<td>918</td>
<td>3.93</td>
<td>138</td>
<td>37.98</td>
</tr>
<tr>
<td>90</td>
<td>19685 (6km)</td>
<td>780</td>
<td>4.81</td>
<td>76</td>
<td>25.41</td>
</tr>
<tr>
<td>120</td>
<td>26247 (8km)</td>
<td>682</td>
<td>5.56</td>
<td>49</td>
<td>19.06</td>
</tr>
<tr>
<td>150</td>
<td>32808 (10km)</td>
<td>606</td>
<td>6.22</td>
<td>35</td>
<td>15.24</td>
</tr>
<tr>
<td>180</td>
<td>39370 (12km)</td>
<td>546</td>
<td>6.81</td>
<td>27</td>
<td>12.53</td>
</tr>
<tr>
<td>210</td>
<td>45932 (14km)</td>
<td>494</td>
<td>7.36</td>
<td>21</td>
<td>9.64</td>
</tr>
<tr>
<td>240</td>
<td>52493 (16km)</td>
<td>450</td>
<td>7.86</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>59055 (18km)</td>
<td>411</td>
<td>8.34</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>65616 (20km)</td>
<td>377</td>
<td>8.79</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

W = 400,000 lb, V = 130 knots, Altitude = 1250 ft, td = 60s
TODWL Sampling Modes

<table>
<thead>
<tr>
<th>Mode Name</th>
<th>C - 17</th>
<th>T-Otter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backslide</td>
<td>600’</td>
<td>3000’</td>
<td>Begin sampling with Twin Otter above and just forward of C -17; drift backwards while nadir raster scanning</td>
</tr>
<tr>
<td>Overtake</td>
<td>600’</td>
<td>3000’</td>
<td>Begin nadir raster sampling when TO is 1 -2 km behind C-17 and then overtake the C-17</td>
</tr>
<tr>
<td>Trailing</td>
<td>600’</td>
<td>1000’</td>
<td>Begin 3km behind C-17 and use dithered prospecting scan at – 6 degrees for 5 min.</td>
</tr>
<tr>
<td>Prospecting</td>
<td>600’</td>
<td>1000’</td>
<td>Begin 3km lateral to C-17 path and cross over DZ; do 180 and repeat going other direction.</td>
</tr>
<tr>
<td>DZ cross (GB)</td>
<td>600’</td>
<td>Zero’</td>
<td>Park the Twin Otter in a position to allow the lidar to scan the DZ from a side perspective to C-17 path.</td>
</tr>
<tr>
<td>DZ along (GB)</td>
<td>600’</td>
<td>Zero’</td>
<td>Park the Twin Otter in a position 3 -5 km “up approach” from the DZ to allow the lidar to scan the DZ along the C-17 path. C-17 would need to fly a J leg to avoid having vortexes hit the Twin Otter.</td>
</tr>
</tbody>
</table>
Aircraft positions and lidar cone of regard for “backslide” and “overtake” modes
Challenges

• Getting and keeping C-17 and Twin Otter aligned during 8km “runs” in cross winds and heavy turbulence
 – C-17 at 130 Kts with FL 550’ or 1250’ AGL
 – Twin Otter at 130 Kts with FL 3500’ - 5500’ AGL

• Keeping vortex pair within TODWL’s field of regard
 – Want a small field of regard to increase spatial and temporal resolution

• Sample features with spatial dimensions of a few 10’s of meters with a pulse length ~ 75m.

• Extract velocities in the presence of strong chirp returns from surface.
Summary

• The airborne DWL documentation of WTV life cycles has been successfully demonstrated. CIRPAS pilots deserve much credit for positioning the Twin Otter in prescribed locations relative to the C-17.

• The initial data sets (35 hours, >150 runs) cover extremely convective, neutral and nocturnal stable boundary layer conditions.

• SWA will work with Draper Labs to add statistical envelopes to its deterministic parametric model.

• This work may provide justification for the use of DWLs on C-17’s to directly detect WTVs.